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Abstract: Effective biomarkers are required for assessing the progression of age-related macular
degeneration (AMD), a prevalent and progressive eye disease. This paper presents a deep learning-
based automated algorithm, applicable to both swept-source OCT (SS-OCT) and spectral-domain
OCT (SD-OCT) scans, for measuring outer retinal layer (ORL) thickness as a surrogate biomarker
for outer retinal degeneration, e.g., photoreceptor disruption, to assess AMD progression. The
algorithm was developed based on a modified TransUNet model with clinically annotated retinal
features manifested in the progression of AMD. The algorithm demonstrates a high accuracy with
an intersection of union (IoU) of 0.9698 in the testing dataset for segmenting ORL using both
SS-OCT and SD-OCT datasets. The robustness and applicability of the algorithm are indicated
by strong correlation (r= 0.9551, P< 0.0001 in the central-fovea 3 mm-circle, and r= 0.9442,
P< 0.0001 in the 5 mm-circle) and agreement (the mean bias= 0.5440 um in the 3-mm circle, and
1.392 um in the 5-mm circle) of the ORL thickness measurements between SS-OCT and SD-OCT
scans. Comparative analysis reveals significant differences (P< 0.0001) in ORL thickness among
80 normal eyes, 30 intermediate AMD eyes with reticular pseudodrusen, 49 intermediate AMD
eyes with drusen, and 40 late AMD eyes with geographic atrophy, highlighting its potential as an
independent biomarker for predicting AMD progression. The findings provide valuable insights
into the ORL alterations associated with different stages of AMD and emphasize the potential of
ORL thickness as a sensitive indicator of AMD severity and progression.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Age-related macular degeneration (AMD) is a leading cause of permanent vision loss among
individuals aged 50 and above [1,2]. Vision loss is typically associated with the late-stage AMD,
which manifests as geographic atrophy (GA) and/or exudative AMD [2]. While the U.S. Food
and Drug Administration (FDA) has approved first treatment, intravitreal pegcetacoplan, for
slowing the rate of GA growth [3], there is currently no effective treatment available to stop the
formation or progression of GA [4]. Therefore, there remains an urgent need to identify early,
clinically measurable features that can serve as biomarkers to help predict the eyes at highest risk
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for progression to GA for use in clinical trials designed to intervene earlier and prevent disease
progression.

Optical coherence tomography (OCT) has revolutionized the field of ophthalmology by
providing high-resolution three-dimensional (3D) images of retinal layers [5–8]. These images
offer invaluable insights into the microstructural and microvascular changes that arise and progress
in eyes with AMD. The progression of these changes over time plays a crucial role in the staging,
treatment planning, and monitoring of AMD. The widespread use of OCT in ophthalmology
has facilitated the identification of OCT biomarkers associated with the progression from
early to late AMD. These biomarkers include the central drusen volume [9–12], the presence
of calcified/refractile drusen [13–15], hyperreflective foci [16–18], reticular pseudodrusen
[18–20], choriocapillaris flow deficits [21], and outer retinal atrophy (including photoreceptor
degeneration) [22–24]. Among these risk factors, assessing photoreceptor degeneration in OCT
imaging presents a significant challenge, both technically and clinically.

Using a deep learning strategy, Orlando et al. [25] assessed the photoreceptor degeneration
by measuring the distance between the top of the ellipsoid zone (EZ) and the outer boundary
of the interdigitation zone, where photoreceptor loss was considered to occur when an axial
distance measurement was equal to or less than 4 µm. The study demonstrated the successful
utilization of photoreceptor loss and thinning as valuable indicators for evaluating the efficacy of
GA treatment [26,27]. However, despite significant advances in OCT development in research
labs [28,29], quantifying EZ loss and thickness using commercially available OCT devices is
still challenging due to the influences of various shadow artifacts (e.g., shadows from vessels and
various overlaying lesions), the limited axial resolution of OCT devices used, the extremely thin
nature of the EZ [25–27,30,31], and the OCT directional effect when imaging the outer retina
especially over drusen [32,33]. As an alternative strategy, outer retinal layer (ORL) thickness
may serve as a surrogate marker for assessing photoreceptor degeneration. This is because the
imaging features of photoreceptor degeneration, such as external limiting membrane (ELM)
descent, ELM and EZ disruption, and the subsidence of inner nuclear layer (INL) and outer
plexiform layer (OPL) [20], contribute to the thinning of the ORL. Zhang et al. [34] reported a
significant negative correlation between ORL thickness around GA and the annual enlargement
rate of GA, suggesting ORL thickness can be used a potential marker for assessing photoreceptor
degeneration.

Several automated algorithms have been developed and tested to automatically segment retinal
layers on OCT images, including the methods using active contour [35], graph search [36–37],
and deep learning approaches [38–44], which may be leveraged to measure the ORL thickness.
However, each method has its own limitations. For example, traditional computer vision methods
face challenges in handling pathologic changes, such as the discontinuity of the OPL likely caused
by the GA formation, making it difficult to achieve an optimal balance between disease-related
disruptions and spatial connectivity. Studies that employ deep/machine learning methods for
retinal layer segmentation on OCT imaging have primarily focused on spectral domain OCT
(SD-OCT) datasets [38,39,41–43,45–48], leaving a clear need for developing an algorithm for
ORL segmentation that can be applied to both SD-OCT and SS-OCT scans.

In medical image segmentation, convolutional neural networks (CNNs) have emerged as
the dominant approach due to their ability to learn highly complex features and models across
different levels of feature abstraction from training data [49]. Among the various architectures
available, U-Net [50], which consists of a symmetric encoder-decoder network, stands out as the
most widely adopted. However, CNN-based models heavily rely on the convolution operation,
which poses challenges in accounting for long-range relation due to its intrinsic local nature. The
vision transformer (ViT), designed for sequence-to-sequence prediction with global self-attention
mechanisms, is considered a viable alternative to CNNs [51], but can result in limited localization
abilities due to insufficient low-level details. In 2021, TransUNet was proposed as a novel model
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that successfully integrated detailed, high-resolution spatial information from CNNs with the
global context encoded by ViT [52]. While the TransUnet model has demonstrated promise
in retinal layer segmentation of SD-OCT images of normal and diabetic macular edema eyes
[42,43], it remains unclear whether it is applicable to SS-OCT datasets, and whether it can be
used to help segment the clinical features involved in AMD such as accurately segmenting the
ORL.

In this study, we propose an automated algorithm employing TransUNet architecture, capable
of measuring the ORL thickness from the scans acquired by both SS-OCT and SD-OCT imaging.
To demonstrate the effectiveness of the algorithm, we performed a comparative analysis of ORL
thickness measurements from SS-OCT and SD-OCT imaging. To further investigate whether the
ORL thickness could serve as a useful biomarker for predicting the progression of AMD, we
examined variations in ORL thickness among different stages of AMD, including normal eyes,
eyes with intermediate AMD displaying macular reticular pseudodrusen, eyes with intermediate
AMD displaying soft drusen only, and eyes with late nonexudative AMD characterized by the
presence of persistent choroidal hypertransmission defects (hyperTDs) on OCT scans [11].

2. Methods

This prospective OCT imaging study was approved by the Institutional Review Board of the
University of Miami Miller School of Medicine. The study was performed in accordance with
the tenets of the Declaration of Helsinki and complied with the Health Insurance Portability and
Accountability Act of 1996. Through a retrospective review of subjects enrolled from April
2016 to August 2022, a total of 199 eyes were included, comprising 80 normal eyes without
any ocular disease, 30 eyes with intermediate AMD with macular reticular pseudodrusen, 49
eyes with intermediate AMD displaying typical soft drusen only, and 40 eyes with eyes with late
nonexudative AMD characterized by the presence of persistent choroidal hyperTDs.

2.1. Image acquisition

Two optical coherence tomography (OCT) instruments were utilized in this study: the PLEX
Elite 9000 (Carl Zeiss, Meditec Inc., Dublin, CA) for SS-OCT imaging and the Cirrus 5000
HD-OCT (Carl Zeiss, Meditec Inc., Dublin, CA) for SD-OCT imaging. This SD-OCT instrument
utilized a central wavelength of 840 nm and a scan rate of 68,000 A-scans/second. The scanning
pattern for the 6× 6 mm SD-OCT scan consisted of 350 A-scans per B-scan and 350 B-scans per
volume, with each B-scan repeated twice using the macular cube protocol. This scanning pattern
resulted in a uniform spacing of 17 µm between A-scans. The SS-OCT instrument used a central
wavelength of 1050 nm and a scan rate of 100,000 A-scans/second. The 6× 6 mm SS-OCT scan
pattern included 500 A-scans per B-scan and 500 B-scans per volume, with each B-scan repeated
twice using the macular cube protocol. This scanning pattern provided a uniform spacing of
12 µm between A-scans. Both instruments featured a full width at half maximum axial resolution
of ∼5 µm in tissue and an estimated transverse resolution of ∼15 µm at the retinal surface.

A total of 40 eyes presenting with typical soft drusen and 40 eyes with hyperTDs, underwent
both SS-OCT and SD-OCT scanning. The remaining 119 eyes (80 normal eyes, 30 reticular
pseudodrusen eyes and 9 drusen eyes) underwent SS-OCT scanning only.

2.2. Automated segmentation of the outer retinal layer

In this study, the ORL is defined as the region extending from the inner boundary of the outer
plexiform layer (OPL) to the retinal pigment epithelium (RPE) when the RPE is visible [34]. In
cases where there is complete RPE and outer retina atrophy (cRORA, or hyperTDs), the ORL is
defined as the region extending from the OPL to Bruch’s membrane (BM).

Figure 1 shows the architecture of the TransUNet model used in this study, with the specifications
all labeled. The modified TransUNet model includes an encoder, decoder, and bottleneck. Unlike
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the original TransUNet that had three layers [42,43], the encoder block is composed of four
convolutional layers and employs ReLU activation. This modification aims to extract more
profound features from OCT images, such as texture information encountered in the AMD eyes.
Following this, a bottleneck block is introduced, featuring six transformer layers instead of
the original twelve in the original TransUNet model. This implementation applies multi-head
self-attention to image patches, facilitating the capture of long-range contextual relationships
within the extracted features from preceding encoder block. The primary goal of this modification
is twofold: 1) to mitigate overfitting and 2) to improve computation efficiency. Finally, a decoder
block with four transpose convolutional layers is utilized to up-sample the feature maps, restoring
their shape to match the original input data.

Fig. 1. The modified TransUNet model architecture and specifications used to perform
outer retinal layer segmentation. (A) the schematic of the encoder block composed of four
convolutional layers; (B) the schematic of the bottleneck block composed of six transformer
layers; (C) the schematic of the decoder block composed of four transpose convolutional
layers.

The Adam optimizer with a learning rate of 0.0001 was used, the model evaluation metric
was defined as the intersection over union (IoU), and the loss function utilized for training was
the binary crossentropy loss. This model was trained with 200 epochs with a patience for early
stopping of 30 epochs, and only the model with the best metric was saved when the validation
loss was not updated under 30 training epochs. For this study, the model was implemented in
Keras using TensorFlow 2.9.0 as the backend, and training was conducted using a 24GB NVIDIA
4090 GPU.

With the confirmed information of clinical diagnoses, the boundaries that define the ORL were
annotated from a total of 2,000 representative OCT B-scans by two clinical experts (F.H. and
G.H.) using a custom-built software that was improved from the segmentation and annotation
software package originally developed in [53]. The purpose of the manual segmentation was for
training the model. The consensus on the annotation of ORL boundaries was reached between
both graders. In cases of disagreement, a senior grader (P.J.R.) was the adjudicator. For training
purposes, we utilized 32 labeled eyes, with 16 eyes (i.e., 800 B-scans) from SS-OCT and 16 eyes
(i.e., 800 B-scans) from SD-OCT. Within the training dataset, we further applied a 75:25 split
between training and validation at the eye level to ensure an effective and reliable evaluation
process. The remaining 8 labeled eyes, comprising 4 eyes (i.e., 200 B-scans) from SS-OCT and
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4 eyes (i.e., 200 B-scans) from SD-OCT, were reserved for testing. These B-scans were extracted
from 20 volumes of SS-OCT scans and 20 volumes of SD-OCT scans, respectively. These scans
were obtained from a total of 40 eyes out of the 199 eyes included in the study. The composition
of the 20 SS-OCT volume scans encompassed 2 normal eyes, 2 eyes with macular reticular
pseudodrusen (RPD), 8 eyes with drusen, and 8 eyes with hyperTDs. The 20 SD-OCT volume
scans comprised 10 eyes with drusen and 10 eyes with hyperTDs. Importantly, there was no
overlap between the eyes included in the SS-OCT and SD-OCT scans within the training dataset.
To consider the practical and pathological manifestations of AMD features in the OCT scans, the
selected B-scans encompassed a diverse range of imaging features including normal scans, a
range of soft drusen sizes, calcified drusen, hyperreflective foci, macular reticular pseudodrusen,
and hyperTDs. The details of the training and testing datasets are shown in Table 1. To avoid
over down-sampling of input images in the A-line direction, all images were first automatically
cropped to 512 (A-line direction)× 500(SS-OCT)/350(SD-OCT) pixels and then were resized to
512× 512 pixels.

Table 1. Training and testing datasetsa

Training Validation Testing

Number of eyes (SS-OCT/ SD-OCT) 24 (12/12) 8 (4/4) 8 (4/4)

Number of representative B-scans (SS-OCT/ SD-OCT) 1200 (600/600) 400 (200/200) 400 (200/200)

aDatasets were obtained from normal eyes and eyes with reticular pseudodrusen, intermediate and large drusen, calcified
drusen, hypertransmission defects, and hyperreflective foci

2.3. Measurements of drusen volume and area of hyperTDs

The measurements of drusen volume were automatically obtained from an algorithm using the
optical attenuation coefficient (OAC) enhanced RPE elevation relative to BM (namely OAC
elevation), which was cross-validated by the Advanced RPE Analysis Algorithm version 0.10, a
validated algorithm publicly available on the Advanced Retinal Imaging Network website (Carl
Zeiss Meditec, Inc) [54]. The hyperTD areas were obtained with a semi-automatic algorithm that
uses customized composite en face OAC images and customized en face sub-RPE OCT images
from a slab defined by boundaries from 64 to 400 µm under BM. The details of the process have
been described in our previous study [55]. Drusen volume and hyperTD areas were specifically
measured in the 3-mm and 5-mm fovea-centered circles.

2.4. Statistical analysis

Statistical analysis was carried out using Matlab2021b and GraphPad Prism (GraphPad Software,
San Diego, CA). Pearson’s correlation was used to compare the ORL thickness measurements
from SS-OCT and SD-OCT, and Bland Altman plots were used to analyze the agreement
between the ORL thickness measurements from SS-OCT and SD-OCT. One-way analysis of
variance (ANOVA) and Tukey–Kramer post-hoc tests were used to compare ORL thickness
differences between normal, reticular pseudodrusen, drusen and hyperTD groups. Furthermore,
the relationship between ORL thickness and drusen volume in the drusen group and the
relationship between ORL thickness and hyperTD areas in the hyperTD group were studied by
Pearson’s correlation. P values below 0.05 were considered statistically significant.

3. Results

The original U-Net and the modified Trans U-Net models were trained separately using the same
datasets as shown in Table 1. Table 2 shows their specific IoUs for the training, validation, and
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testing datasets. In the eight eyes or 400 B-scans in the testing set, the modified Trans U-Net
model significantly outperformed the original U-Net model (IoU: 0.9698 vs 0.9198).

Table 2. Training and testing results

Intersection Over Union (IoU) Original U-Net Modified TransUNet

Training 0.9574 0.9850

Validation 0.9522 0.9748

Testing 0.9189 0.9698

Figure 2 demonstrates the automatic ORL segmentation of two representative eyes with drusen
and hyperTD, respectively, that were scanned by both SD-OCT and SS-OCT instruments at the
same visit. Note that these eyes were not included in the training and validating datasets. Overall,
the automated segmentations and measurements show excellent agreement between the results
from the SS-OCT and those from the SD-OCT scans.

Fig. 2. Representative automatic segmentation results of outer retinal layer (ORL) taken
from an eye with soft drusen and an eye with persistent hypertransmission defects (hyperTDs)
scanned by both SS-OCT (top row) and SD-OCT (bottom row). (A, D, G, and J) ORL
thickness maps encoded using the color bar. (B, C, E, F, H, I, K and L) OCT B-scans with
their locations shown as dashed lines in (A, D, G, and J) where drusen and hyperTDs can be
identified. Orange arrows indicate the hyperTDs that are used clinically to identify atrophic
areas. Blue outlines indicate the inner boundary of the outer plexiform layer and yellow
outlines indicate the retinal pigment epithelium (RPE) or Bruch’s membrane where RPE is
absent. White circles indicate 3 mm and 5 mm diameter fovea-centered circles. Scale bar
represents 1 mm.

In total, 40 eyes with only typical soft drusen and 40 eyes with hyperTDs underwent both
SS-OCT and SD-OCT scanning and the ORL thickness measurements were compared from
both imaging platforms. Among the 80 eyes used for evaluation, 32 eyes were utilized during
the algorithm’s training. It is worth noting that there was no overlap between the eyes included
in the SS-OCT and SD-OCT scans within our training dataset. This indicates that for each
eye, at least one volume scan (either SS-OCT or SD-OCT) used for evaluation was not part
of the algorithm’s training data. Therefore, the reuse of the data from the 32 eyes is unlikely
to significantly influence the algorithm’s evaluation. Figure 3 shows the scatter plots for the
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automated measurements of ORL thickness acquired by the SS-OCT vs the SD-OCT instruments.
A strong correlation was found between the measurements of ORL thickness in the 3-mm circle
(r= 0.9551, P< 0.0001, Fig. 3 A) and 5-mm (r= 0.9442, P< 0.0001, Fig. 3 B) fovea-centered
circles. Bland-Altman analysis showed that the average bias of the measurements in the 3-mm
circle was 0.5440 um (95% limits of agreement [−8.005, 9.093], Fig. 3 C) and the average bias
of the corresponding measurements in the 5-mm circle was 1.392 um (95% limits of agreement
[−5.335, 8.119], Fig. 3 D) between SS-OCT and SD-OCT scans. Overall, the measurements of
ORL thickness computed using the SS-OCT appear to be a little thicker than those produced by
the SD-OCT, particularly in hyperTD eyes and when the mean ORL thickness was less than 150
µm. However, considering the axial pixel dimension of 2 µm, this discrepancy between SD and
SS-OCT would not be considered clinically significant.

Fig. 3. Automated measurements of outer retinal layer (ORL) thickness from OCT scans
acquired by the SS-OCT vs the SD-OCT. (A) Scatter plot of the ORL measurements from
SS-OCT against SD-OCT showing strong correlation in the 3 mm (r= 0.9551, P< 0.0001),
and (B) in 5 mm (r= 0.9442, P< 0.0001) fovea-centered circles. (C and D) Bland-Altman
agreement analysis of ORL measurements from SS-OCT against SD-OCT, where the solid
line represents the bias, and the dashed gray lines represent the upper and lower 95% limits
of agreement. Blue dots represent drusen eyes, and orange dots represent eyes with persistent
choroidal hypertransmission defects.

After validation of the algorithm above, we investigated its utility in the measurements of
changes in the ORL thickness in the eyes with intermediate and late stages of AMD. In this
exercise, a total of independent 199 eyes scanned by SS-OCT were measured and analyzed.
Among these 199 eyes, there were 80 normal eyes, 30 macular reticular pseudodrusen eyes, 49
drusen only eyes, and 40 hyperTD eyes. The characteristics of these groups are summarized
in Table 3. The four groups were age matched (ANOVA P= 0.1087), with the mean age being
72.5± 8.0 years in the normal group, 73.6± 8.2 years in the macular reticular pseudodrusen
group, 76.0± 8.0 years in the soft drusen group, and 74.1± 8.7 in the hyperTD group. Figure 4
shows representative examples of each group. Note that these four examples were not used in the
training dataset. Compared with the normal eye, the ORL thickness map of the macular reticular
pseudodrusen eye is globally thinner (Figs. 4(B) and (F)), while the ORL thickness map for the
drusen eye (Figs. 4(C) and (G)) shows thinning overlying the drusen. The ORL thickness map of
the hyperTD eye is significantly thinner than other three groups due to the attenuation and loss of
the photoreceptors and RPE in the regions of atrophy (Figs. 4 D and H).
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Fig. 4. Representative segmentation results of the outer retinal layer (ORL) taken from a
normal eye (A and E), a reticular pseudodrusen eye (B and F), a soft drusen eye (C and
G), and an eye with a persistent choroidal hypertransmission defect (D and H). (A-D) ORL
thickness maps where the ORL thickness is encoded according to the color bar. (E-H) OCT
B-scans with their locations shown as dashed lines in (A-D), with blue lines indicating the
inner boundary of outer plexiform layer (OPL) and yellow lines indicating the location of
retinal pigment epithelium (RPE) or Bruch’s membrane where RPE is absent. Blue lines
and yellow lines were derived from the automated segmentations. White circles indicate 3
mm and 5 mm diameter fovea-centered circles, respectively. Scale bar represents 1 mm.

Table 3. Characteristics of all the eyes imaged with SS-OCT included in this studya

Characteristics Normal (n= 80) RPD (n= 30) Drusen (n= 49) hyperTDs (n= 40) P Value

Age, year, mean (SD) 72.5(8.0) 73.6(8.2) 76.0(8.0) 74.1(8.7) 0.1087

3mm-circle ORL
thickness, µm, mean
(SD)

178.1(9.4) 167.7(8.6) 156.3(8.9) 141.3(16.3) <0.0001

5mm-circle ORL
thickness, µm, mean
(SD)

163.1(8.7) 156.0(7.4) 148.7(5.5) 138.3(11.3) <0.0001

aAbbreviations: SD – standard deviation. ORL – outer retinal layer. RPD – reticular pseudodrusen. hyperTDs –
hypertransmission defects.

Table 3 and Fig. 5 and Table 3 show the results for the ORL thickness measurements representing
all eyes in the 3-mm circle and 5-mm fovea-centered circles. When comparing the average ORL
thickness of each group with the average of every other group, it was observed that the normal
group presented the largest mean value, followed by the macular reticular pseudodrusen group,
the soft drusen group with the third largest mean value, and finally, the hyperTD group with the
lowest mean value. These findings highlight significant differences of ORL thickness between
the groups (all P< 0.01) in both the 3-mm circle and 5-mm fovea-centered circles. The absolute
differences between means may change with different datasets due to variations in soft drusen
volume and areas of hyperTDs, but the relationships between the groups are expected to remain
the same.

Figure 6 shows the relationship between the measurements of ORL thicknesses and drusen
volume in the soft drusen group. Notably, a significant negative correlation between drusen
volume and ORL thickness was observed within the 3 mm-circle (r= -0.4616, P= 0.0008),
whereas no significant correlation was found within the 5 mm-circle (r= -0.1175, P= 0.4215).
In other words, in the 3 mm circle a smaller ORL thickness appeared to correspond to a larger
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Fig. 5. Graphic representation of automated outer retinal layer (ORL) thickness measure-
ments using the algorithm developed in this study. Comparison of ORL thickness among
the normal, reticular pseudodrusen, soft drusen, and persistent choroidal hypertansmission
defects on the 3 mm (A) and 5 mm (B) fovea-centered circles, respectively. ** repre-
sents P ≤ 0.01, *** represents P ≤ 0.001, and **** represents P ≤ 0.0001. Boxplots show
interquartile range, whiskers minimum to maximum, and all points.

RPE-BM distance. The difference in results between the circles might be due to the fact that
most of the drusen were typically located within the 3 mm circle, as seen in Fig. 6(A).

Fig. 6. A representative example of a drusen eye along with the relationship between drusen
volume and ORL thickness measurements in the drusen group: (A) the drusen map by
displaying the distances between yellow lines and green lines shown in (C and D) and (B)
corresponding outer retinal layer (ORL) thickness map. (C and D) OCT B-scans with their
locations shown as dashed lines in (A and B) where drusen can be identified. Blue outlines
indicate the inner boundary of the outer plexiform layer, yellow outlines indicate the retinal
pigment epithelium (RPE), and green outlines indicate Bruch’s membrane. (E and F) Scatter
plots showing the relationship between drusen volume and ORL thickness measurements in
the drusen group for the 3 mm-circle and 5 mm-circle centered on the fovea, respectively.
White circles indicate 3 mm and 5 mm diameter circles centered on the fovea.
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Figure 7 shows the relationship between the ORL thickness measurements and the hyperTD
area measurements in the GA group. The hyperTD regions had a thinner ORL thickness than
surrounding regions, so a strong negative correlation between hyperTD areas and ORL thickness
observed within both the 3 mm-circle (r= -0.8333, P< 0.0001) and the 5 mm-circle (r= -0.7630,
P< 0.0001) would be expected.

Fig. 7. A representative example of an eye with persistent choroidal hypertransmission
defects (hyperTDs) along with relationship between hyperTD area measurements and ORL
thickness measurements in the persistent hyperTD group: (A) OCT En face Sub-RPE image
obtained from a slab defined from 64 um to 400 um below the Bruch’s membrane (BM)
shown with green lines in (C), with the yellow outlines highlighting the GA areas and (B)
corresponding outer retinal layer (ORL) thickness map. (C) OCT B-scan with its location
shown as the dashed line in (A and B) where hyperTDs can be identified. Orange arrows
indicate the hyperTDs that are used clinically to identify atrophic areas. Blue outlines indicate
the inner boundary of the outer plexiform layer and yellow outlines indicate the retinal
pigment epithelium (RPE) or Bruch’s membrane where RPE is absent. (D and E) Scatter
plots showing the relationship between hyperTD area measurements and ORL thickness
measurements in the persistent hyperTD group in the 3 mm-circle and 5 mm-circle centered
on the fovea, respectively. White circles indicate 3 mm and 5 mm diameter fovea-centered
circles.

4. Discussion

There remains an urgent need to identify OCT biomarkers that can be used to define clinical
endpoints that can predict the high risk of progression to late AMD. Photoreceptor degeneration
has been associated with AMD progression [22–24,34]. To investigate whether ORL thickness
could serve as a surrogate biomarker for assessing photoreceptor degeneration and predicting
the risk of AMD progression, we have developed a deep learning-based automated algorithm
capable of measuring the thickness of the ORL that is applicable to both SS-OCT and SD-OCT
scans. The deep learning-based approach demonstrated a high accuracy in segmenting the ORL,
with an IoU of 0.9698 in the testing dataset, allowing for reliable quantification of disease-related
changes caused by the loss of RPE, elevation of RPE, subsidence of OPL, and disruption of
the photoreceptor integrity. Strong correlation and agreement of ORL thickness measurements
between SS-OCT and SD-OCT datasets further validated the robustness and applicability of
the algorithm across different OCT modalities (Fig. 2 and 3). In addition to its application in
evaluating AMD, ORL thickness has also been utilized for the detection of brain-related diseases



Research Article Vol. 15, No. 1 / 1 Jan 2024 / Biomedical Optics Express 423

[56,57] and diabetic macular edema [58], highlighting the potential future applications of the
algorithm.

Using this automated algorithm, we showed significant differences in ORL thickness among
the normal, macular reticular pseudodrusen (intermediate AMD), soft drusen (intermediate
AMD), and hyperTD (late AMD) groups (Table 3 and Figs. 4 and 5), consistent with previous
studies demonstrating that intermediate AMD had thinner ORL compared to normal controls
[59–61]. The extent of this thinning is likely correlated with the volume of the drusen. It is worth
noting that Sotaro et al. [62] reported no age-related changes in ORL thickness, while Arepalli et
al. [63] found an increase in ORL thickness with age in the normal group. Using the current ORL
algorithm, we plan to explore whether the ORL thickness changes with age. While it is likely
that the reduced ORL thickness observed in our study depends more on the anatomic changes
associated with soft drusen and hyperTDs rather than an effect of age alone, it is intriguing to
speculate that the decreased macular thickness associated with macular reticular pseudodrusen is
not due to the anatomic presence of reticular pseudodrusen since the RPE and not the EZ serves
as the outer boundary of the ORL algorithm. Therefore, the outer retinal thinning in eyes with
reticular pseudodrusen is likely real and probably secondary to the poor nutritional exchange that
results from decreased choriocapillaris perfusion as previously reported for these eyes [19].

Drusen volume, known to be a predictor of disease progression of late AMD [9,64], showed
a negative correlation with ORL thickness in the 3-mm fovea-centered circle (r= -0.4616,
P= 0.0008, Fig. 6). However, there was no significant correlation between drusen volume and
ORL thickness in the 5-mm circle. This is likely attributable to the influence of drusen volume
on the measurements of ORL thickness, particularly considering that the majority of drusen were
located in the fovea centered 3-mm circle in all the 49 drusen cases, as shown in the example in
Fig. 6(A). An anticipated outcome would involve the ORL displaying a thinner dimension when
situated above larger drusen. This is primarily due to the potential displacement and subsequent
degeneration of photoreceptors directly overlying these drusen structures [65]. Consequently, a
more pronounced inverse correlation emerges, correlating an escalation in drusen volume with a
reduction in ORL thickness within the 3 mm circle. Notably, the interstitial space flanked by the 3
mm and 5 mm circles exhibits a diminished drusen presence, consequently leading to a dissipation
of the correlation and statistical significance evident within the 3 mm circle, thus explaining its
absence within the 5 mm circle. Also, this relationship between higher drusen volumes and ORL
thinning may also explain the significant difference in ORL thickness between the drusen and
reticular pseudodrusen groups shown in Fig. 5. In this study, the mean drusen volume within
the fovea-centered 5 mm circle was 0.207± 0.185 mm3 in the soft drusen group, whereas only
0.01± 0.02 mm3 in the reticular pseudodrusen group were observed. Consequently, the ORL
thickness in the drusen eyes were affected not only by drusen volume but also by outer retinal
atrophy, while reticular pseudodrusen eyes were primarily impacted by outer retinal atrophy
[60,61]. With these results, it is likely that the ORL thickness could serve as a more sensitive
biomarker for evaluating the progression of AMD than drusen volume, as it encompasses changes
from both drusen volume and the outer retina atrophy, which may correlate with decreased
choriocapillaris perfusion. While encouraging, such statement warrants a systematic study by
enrolling more eyes including different stages of AMD.

Strong correlations were observed between hyperTD area measurements and ORL thickness
measurements in both the 3-mm and 5-mm circles (r= -0.8333, P< 0.0001 in the 3-mm circle;
r= -0.7630, P< 0.0001 in the 5-mm circle; shown in Fig. 7). This correlation can be attributed to
the significantly thinner ORL thickness in the hyperTD regions compared to the surrounding
areas [66], shown in Fig. 4 (D and H). These findings highlight the potential of ORL thickness as
a potential biomarker for assessing the progression of hyperTDs as previously reported [34].

Although promising, it should be noted that there are several limitations in the current study.
First, the training datasets used in this study were obtained from Carl Zeiss OCT devices, and
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the applicability of the algorithm to data acquired by other commercial devices, for example
Heidelberg Engineering and Topcon, remains untested. Nevertheless, although some bias may
arise when applying the algorithm to datasets from different device types, we believe our algorithm
can still assist in annotating ORL segmentations in the scans acquired from these devices, and
that our current algorithm can be trained to include them. Secondly, the lack of follow-up visits
for the AMD groups hinders a comprehensive investigation of the impact of ORL thickness on
AMD progression. To address this, future studies will incorporate multiple follow-up visits [67],
enabling a comparison of ORL differences between eyes that progress to late AMD and those
that do not, thus enhancing our knowledge of the mechanism and evolution of AMD. Lastly,
this study did not measure other biomarkers associated with AMD, including choriocapillaris
flow deficits, calcified drusen, and hyperreflective foci [68–70]. Together with the changes in
ORL thickness measurements, we intend to investigate all these biomarkers in future studies to
determine their predictive power in assessing AMD progression.

In conclusion, a deep learning-based algorithm was developed to measure ORL thickness
as a surrogate marker for assessing AMD severity. The algorithm demonstrated high accuracy
and robustness in quantifying ORL thickness measurements in different stages of AMD and is
applicable to both SS-OCT and SD-OCT scans. The comparative analysis revealed significant
differences in ORL thickness measurements among different AMD stages, indicating its potential
use as an independent biomarker for predicting AMD progression as previously reported for the
growth of hyperTDs [34].
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